f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
↳ QTRS
↳ Overlay + Local Confluence
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
F(X) → F(g(X))
F(X) → G(X)
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
G(s(X)) → G(X)
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
F(X) → F(g(X))
F(X) → G(X)
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
G(s(X)) → G(X)
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
F(X) → F(g(X))
F(X) → G(X)
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
G(s(X)) → G(X)
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDP
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
SEL(s(X), cons(Y, Z)) → SEL(X, Z)
s > SEL1
cons2 > SEL1
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
G(s(X)) → G(X)
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G(s(X)) → G(X)
s1 > G1
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))
↳ QTRS
↳ Overlay + Local Confluence
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ EdgeDeletionProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
F(X) → F(g(X))
f(X) → cons(X, f(g(X)))
g(0) → s(0)
g(s(X)) → s(s(g(X)))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
f(x0)
g(0)
g(s(x0))
sel(0, cons(x0, x1))
sel(s(x0), cons(x1, x2))